Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Ocean general circulation models (OGCMs) are often used at horizontal resolutions that preclude the appearance of mesoscale eddies. The ocean mesoscale constitutes a significant component of ocean variability, and OGCMs whose resolutions are too coarse to represent the mesoscale are necessarily lacking this variability. In addition to being variable, the ocean mesoscale also induces variability on larger scales that could be resolved on a coarse grid, but coarse OGCMs often lack this variability too. This paper develops a stochastic parameterization that adds small increments to an OGCM's lateral velocity field, which excites natural modes of variability in the model. The rate at which these velocity increments add energy to the flow is tied to the rate at which the Gent‐McWilliams parameterization—a popular parameterization of the effect of mesoscale eddies on tracer transport—removes potential energy from the resolved scales. The stochastic parameterization is implemented in a non‐eddying OGCM, where it is shown to increase the variability significantly.more » « lessFree, publicly-accessible full text available May 1, 2026
-
ABSTRACT Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and Planck data, where most of the contamination due to the thermal Sunyaev Zel’dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio = 7.1 and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution (S8 ≡ σ8(Ωm/0.3)0.5 = 0.782 ± 0.059) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6×2pt analysis between DES and ACT.more » « less
-
Abstract We describe a new way to apply a spatial filter to gridded data from models or observations, focusing on low‐pass filters. The new method is analogous to smoothing via diffusion, and its implementation requires only a discrete Laplacian operator appropriate to the data. The new method can approximate arbitrary filter shapes, including Gaussian filters, and can be extended to spatially varying and anisotropic filters. The new diffusion‐based smoother's properties are illustrated with examples from ocean model data and ocean observational products. An open‐source Python package implementing this algorithm, called gcm‐filters, is currently under development.more » « less
An official website of the United States government
